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The functional dependence of Pr (~0,n-c~0) on c~0 is 
shown in Fig. 1 (a to d) for (sin 0) /2=0.1,0 .2 , . . .  1.2 
when (Idrl)  has values 0.05, 0.10, 0.15 and 0 .2A 
respectively. 

The following points may be noted for making use 
of Fig. 1 in actual cases: (i) The value of Pr (ct0,n 
-~0) read from a given curve corresponding to a given 
value of (sin 0)/2 represents the fraction with reference 
to reflexions in that range of (sin 0)/2. Thus for ex- 
ample, if n denotes the total number of reciprocal- 
lattice points in the range 0.05 _< (sin 0)/2 < 0.15 for a 
given crystal, then for the case (IArl) = 0.1 A and c~0 = 
30 °, we have Pr (~0,n-~0)=0.04. Thus under the 
above conditions the actual number of reflexions lying 
in the (sin 0)/2 range 0.05 to 0.15 and having phases 
whose values deviate from the centrosymmetric values 
of 0 or n by more than 30 ° will be 0.04 × n; (ii) From 
the consideration given above it is clear that the value 
of (IArl) must be known a priori in order to make use 
of Fig. 1. The value of (IArl) for a given crystal ex- 
hibiting a degree of centrosymmetry could be estimated 
by a procedure discussed in the previous paper (PP, 
1974). 

It is seen from Fig. 1 that in a given crystal 
(i.e. (Izlrl) is fixed) the percentage of reflexions for 

which the magnitude of the phase angles would lie 
in any given range, say 30 o< ct < 150 0, is more for the 
high-angle than for the low-angle reflexions. For ex- 
ample when (IArl)~0"l  A, only 4% of the reflexions 
have phase angle distributed in the range 30 to 150 ° 
when (sin 0)/2=0.1 while it is as high as 17% when 
(sin 0)/2 = 0.4. The deviation of the phase angles from 
the centrosymmetric values of 0 or n is thus more 
effectively exhibited for the reflexions with (sin 0)/2 
> 0.1. This property might possibly be exploited for 
refinement of such structures by a modified Fourier 
synthesis and this problem is under investigation. 

One of the authors (V.P.) would like to thank the 
Council of Scientific and Industrial Research, New 
Delhi, India, for financial assistance. 
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To find a solution of the phase problem of centrosymmetric crystals, it is as a rule necessary to find among 
many possible solutions a correct system of signs of the structure factors. This paper describes the pro- 
cedure used for finding a correct solution based on a comparison of the theoretical and empirical distri- 
bution functions of the positive signs of structure products. 

1. Introduction 

When solving the phase problem of centrosymmetric 
crystals by using direct methods it is usually necessary 
to decide at the end of the calculation which of the 
suggested sets of signs of the structure factors is the 
correct one (Karle & Karle, 1966; Ahmed, 1969; 
Woolfson, 1971, etc.). There exist several different 
procedures for determining which of the suggested 
solutions is the likeliest to be the correct one. 

Schenk (1973a) has described an effective procedure 
for determining the correct set of signs using Harker-  
Kasper type relations. 

Riche (1973) suggested for these purposes the so- 
called phase function based on the Sayre-Hughes for- 
mula. 

It has been the objective of this paper to show how 
to create criteria suited for the determination of a cor- 
rect system of signs of the structure factors based in 
the so-called statistical relationship (e.g. Hauptman & 
Karle, 1953; Cochran & Woolfson, 1955; Karle & 
Gilardi, 1973). 

2. Consistency test 

As a rule, sign relationships of the statistical type may 
be rearranged into a form in which the probability 
P+ theor of the positive sign of the structure product* is 

* The structure product is such a product of structure factors 

F~I for which the corresponding linear combination of their 
1 = i  

phases ~ at. ~0m is a structure seminvariant. 
1 = 1  
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expressed in terms of a non-decreasing function of the 
expression W consisting of the absolute values of the 
structure factors. The expression W will be referred to 
below as a weight of the respective statistical relation- 
ship. 

It may be assumed that the most probable solution 
will be the one giving the best agreement between the 
relative frequency values of the positive signs of the 
structure products o , )  for given sufficiently large " + e x p  

intervals of the weights and, on the other hand, the 
theoretical probability values of positive sign of the 
structure product - ~'+(l)th=o~ corresponding to the average 
weights in these intervals. An appropriate measure for 
the fit of these values is a weighted sum K of their 
squared deviations: 

p 
(p ( / )  p ( O  ~2 

~ r i . \ ~ + e x p - - ~ + t h e o r 7  

K =  t=l p , (1) 
~r~ 
l=1 

where the summation proceeds over all groups of the 
structure products, r1 is the statistical weight character- 
izing the degree of accuracy of the determination of the 
difference ~'") o . )  for an ith contribution, and + e x p  - -  . J r  + theor 

p is the number of groups of the structure products. 
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Fig. 1. Comparison of the curves P+=xp (for solution 1 . . . .  , 
2 . . . . .  , 3 . . . . . . .  , 4 . . . . . . .  and 7 
. . . . . . . . .  ) with the corresponding e+ theo r  (full line) 
for C16H2~N303C1. The best fit between the curves P+=xp and 
P+th¢or is obtained by using solution 1. 

It is expected that the smaller the coefficient K the 
larger the probability that the associated set of signs 
will be the correct one. 

The reliability of the consistency test is strongly de- 
pendent on the extent to which the premises of validity 
of the statistical relationship used for calculating 
P")  are fulfilled for the structure under investiga- + theor 
tion. Since the existing methods of calculation of 
P")  do not allow the special structure features to be + theor 
taken into account (overlapping of Patterson peaks, 
pseudosymmetry, etc.), it may happen that for some 
structures the correct system of signs of the structure 
factors will not correspond to the lowest coefficient K, 
but to some of the subsequent ones. 

3. Consistency test based on the 22 z relationship 

(a) Method 
Let us further restrict ourselves only to the case 

when the tested structure products are triplets of nor- 
malized structure factors EaEKEa-K. 

To calculate the probability P+ that the product 
EHEKEn-K has the positive sign, the relationship 
(Cochran & Woolfson, 1955) 

P+=½+½ tanh {CY 3 . a~3/ZIEaEKEH_KI} (2) 
N 

is usually employed, where at = ~ ZJ, N is the number 
J = l  

of atoms in the unit cell, and Z~ is the number of elec- 
trons of the j t h  atom. 

The procedure for determining a correct system of 
signs of the structure factors based on the validity of 
relationship (2) is as follows: 

(1) The triplet list is divided into p groups so that 
each group contains approximately 100 triplets and 
any arbitrary triplet in the (i+ 1)th group has a higher 
weight IEaEKEa-KI than any arbitrary triplet in the ith 
group. 

(2) For the tested system of signs of the structure 
factors the signs of all triplets in the triplet list are 
determined. 

(3) In each group of triplets the number of triplets 
with the positive sign N~,  the number of triplets with 
the negative sign NT, the total number of signed 
triplets N i = N  { + N T  and the average weight of the 
triplets 

WI=(1/Ni) ~ a3 . a~3/ZIEnEKEn-KI (3) 

are determined. The summation is over all signed 
triplets in the ith group. 

(4) For each group of triplets the theoretical prob- 
ability of the positive sign of the triplet with the average 
weight W~ is calculated using relation (3), 

p(,) _(1)+(½) tanh (IYi), (4) 
+ t h e o r  - -  

and also the relative frequency of the positive signs of 
the triplets in the ith group of triplets, 

P")  - N +/(N ~" + N'f ) + e x p  ~ 
(5) 

A C 3 0 A  - 8 *  
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p(o [and P~xp] values may be plotted depending + t h e o r  

on the corresponding average weight of the triplets, IT/z . 
A curve P+theor (and P+,xp) may be plotted through 
these points. 

(5) Coefficients which we shall call ~Y" (for statistical 
weights r~=N~) and J r '  (for statistical weights r~= 
N~ if't) are calculated from relationship (1). 

(6) The whole procedure is carried out for each of 
the tested solutions. 

(7) The most probable system of signs of the struc- 
ture factors of all the tested ones is that which provides 
the best fit between the P+~xp and P+theor curves. Since 
the coefficients ~ and o~¢f' express a certain measure 
of the area between these two curves, the most probable 
solution is indicated by the lowest coefficients ~ and 
3((".  

When comparing the theoretical and empirical dis- 
tribution functions of the positive signs of triplets, it 
should be borne in mind that the course of the relative 
frequency of the positive-sign triplets P+exo depending on 
W~ may differ considerably, even for a correct system 
of signs of the structure factors, from the course of the 
curve P+tlaeor obtained by using relationship (4). The 
deviations of the curve P+~xp from the curve P+theor 
calculated from (4) may be due to some characteristic 
features of the structure solved (the presence of a heavy 
atom, overlap of Patterson peaks, non-crystallographic 
symmetry, etc.), which disturb the validity of the as- 
sumptions used for deriving the curve P+theor, and/or 
to unreliably determined experimental values of nor- 
malized structure factors. 

Schenk (1973b) shows in some examples how in the 
case of real structures the curves P+exp for a correct 
solution differ from P+ theor calculated according to (4). 
Further studies on the course of the curves P+exp can be 
found in a paper by Krieger & Schenk (1973). 

(b) Comparison with the figures of merit 
Coefficients M called the 'figures of merit' (Woolf- 

son, 1971) are very frequently used for the identification 
of a correct system of signs of the structure factors: 

M -  ~w~ (6) 
Iw, I 

In this expression the summation proceeds over all 
triplets H, K, H - K  with determined signs. The 
weights w~ of the triplets are taken either as w~= 
sign (En). sign (EK). sign (Ea_K) or w~ = E , .  EK. Eu-K 
or w;'=w,[½+½ tanh (a3. crF3/2IE.EKE._KI)]; the as- 
sociated coefficients are M, M' ,  and M "  respectively. 
It is expected that the correct set of signs of the struc- 
ture factors will be found among those solutions which 
have the largest values of M. 

Schenk (1972) has shown that the application of the 
figures of merit brings about a number of difficulties in 
the symmorphous space groups, i.e. space groups not 
containing glide planes or screw axes. The solution 
corresponding to the largest value of M in symmorphous 
space groups is always the highly improbable case of a 

structure with all phases ~0n--O, but for the other solu- 
tions also the coefficients give no reliable indication of 
correctness. 

It may be shown that between the coefficient M and 
a special case of the coefficient oU [for p = 1, ,D(~)+ tb~o~-- 1] 
there exists a simple relationship M =  1-21/:U. Thus, 
on the one hand, the form of the curves P+exp is not 
taken into account in the coefficient M, and on the 
other, it is based on rather a rough assumption that 
the probability of the positive sign of an arbitrary 
triplet in the list of triplets is 100 %. 

Consequently, the main drawback of the figures of 
merit consists in that they do not take into account 
information on the negative signs of triplets provided 
by relationship (2). According to this relationship, a 
group of triplets with the same value IEnEKEn-KI con- 
tains 50-50. tanh (o'a. crF3/21EHEKEn_KI) per cent of 
triplets with the negative sign of the product 
EHEKEn_K. Since the consistence test makes use of 
this information, it may be shown that the difficulties 
appearing in symmorphous space groups when the figures 
of merit are used are greatly reduced. Also the coef- 
ficients ~ and d '  show the fit between the whole 
courses of the curves P+exp and P+theor, in contrast 
with the coefficient M. It is quite likely, therefore, that 
coefficients of type Yf may lead to a certain improve- 
ment also in the case of non-symmorphous space groups 
where the figures of merit give good results. 

(c) Experimental results 
The use of the test of consistency has been demon- 

strated by using the chlorate of 4,4'-bis(dimethyl- 
amino)diphenylamine radical, Cx6H2xN303C1, PT, 

1 oo% (r ~ -~ 
..... 

I/' P+exp I 900/0 ••'el°°•• •'/ 

8O% 

w, 
Fig. 2. Comparison of the curves P+~xp (for solutions 1 . . . .  

and 2 . . . .  having the lowest coefficients Yf) with the 
curve P+th©or (full line) for cis-l,3,5-trichlorocyclohexane. 
The best fit of the curves P+,xp and P+theor is given by solu- 
tion 1. 
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Z = 2  (Hlavat~i, 1971) and cis-l,3,5-trichlorocyclohex- 
ane, C6H9C13, C2/c, Z = 8  (Huml & Hagek, 1973). 

The coefficients~"((',~" ' and the corresponding figures 
of merit M, M '  and M "  for eight possible solutions 
with the lowest ~ for C16H21N303CI are summarized 
in Table 1. Solution No. 1 gave a correct picture of the 
structure. The coefficients o¢I and ~" '  in this case in- 
dicate the correct solution quite unequivocally, while 
figures of merit M, M '  and M "  assume their highest 
values for solutions 4 and 7. 

Table 1. Coefficients ~¢{',,%e" and figures of  merit 
M, M'  and M "  for the chlorate of  

4,4'-bis(dimethylamino)diphenylamine radical 
(symmorphous space group PT) 

The correct solution is solution No. 1. 
Solution 

No. AP.10 s ,ff'.10 s M. IO 3 M'.10 s M".103 
1 42 28 952 965 953 
2 156 86 934 956 936 
3 246 133 936 965 933 
4 274 145 1000 1000 1000 
5 323 158 934 957 937 
6 395 192 924 951 927 
7 428 190 951 972 954 
8 445 221 922 951 926 

The curves P+exp for solutions 1, 2, 3, 4 and 7 (with 
the lowest coefficients ~¢r, ~ , )  are compared in Fig. 1 
with the corresponding curve P+theor. Solutions 4 and 
7 give a higher number of the positive signs of triplets 
with a high weight IEaEKEn-KI than solutions 1 ; con- 
sequently, according to the figures of merit, they are 
wrongly suggested as the most probable ones. On the 
other hand the coefficients J f ,  X '  indicate quite un- 
ambiguously solution 1 as the most correct one, since 
the curve P+exp for solution 1 gives the best fit with the 
curve P+theor (full line). 

Table 2 shows the coefficients o,Y', Jr" '  and the corre- 
sponding figures of merit for eight possible solutions 
for cis-l,3,5-trichlorocyclohexane; Fig. 2 gives a com- 
parison of the curves P+exp for solutions 1 and 2 with 
the corresponding curve P+thoor. Table 2 and Fig. 2 
indicate quite unequivocally that the correct solution 
is solution 1. 

The calculations were carried out by means of the 
program 'Consistence test' (Fortran-IV, IBM-370) 
which may be used as a continuation of the sets of 

Table 2. Coefficients ~ ,  S '  and figures of  merit 
M, M'  and M "  for cis-l,3,5-trichloroeyelohexane 

(non-symmorphous space group C2/c) 

The correct solution is solution No. 1. 
Solution 

No. ,~.10 s ~f".10 s M.10  s M'.10 s M".10 s 
1 93 29 988 991 988 
2 213 156 )50 961 951 
3 1441 2782 906 865 906 
4 2265 3575 858 828 858 
5 2821 1964 837 873 837 
6 3020 2070 831 870 832 
7 5126 5547 768 759 768 
8 5547 5986 752 755 763 

programs SAP (Ahmed, 1969) and MULTAN (Woolf- 
son, 1971). 

Conclusion 

The newly suggested coefficients of type ~f" indicate the 
correct solution more reliably than the figures of merit, 
mainly in symmorphous space groups. Consequently 
they seem to be a suitable aid for finding the correct 
solution to the phase problem of centrosymmetric 
crystal structures. 

The author thanks Dr  H. Schenk and Dr  K. Huml 
for their helpful criticism of the manuscript. 
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